
Learning Feature Descriptors using
Camera Pose Supervision
–Supplementary Material–

Qianqian Wang1,2, Xiaowei Zhou3, Bharath Hariharan1, and Noah Snavely1,2

1Cornell University 2Cornell Tech 3Zhejiang University

1 Overview

In this supplemental material, we provide additional experimental results, visual-
izations, and implementation details. In Sec. 2, we demonstrate the performance
of our learned descriptors on a standard visual localization benchmark. In Sec. 3,
we investigate the robustness of our method to the errors in camera poses. In
Sec. 4, we visualize the probabilistic distribution of correspondences for given
query points in example image pairs. In Sec. 5, we show more qualitative results
for dense feature matching. In Sec. 6, we visualize the sparse point cloud of SfM
using our descriptors. Finally, in Sec. 7 we provide additional implementation
details, including network architecture and training details.

2 Visual Localization Results

As an additional experiment, we evaluate how our descriptors facilitate the task of
visual localization. Following D2-Net [6], we use the Aachen Day-Night dataset [16]
and the standard protocol proposed in [15] to evaluate the performance of our
descriptors in the context of long-term localization1. Specifically, this protocol
first does exhaustive feature matching between the day-time images with known
poses, and then uses triangulation to obtain 3D scene structure. The resulting 3D
models are then used to localize 98 night-time query images in the dataset. For
each night-time image, up to 20 relevant day-time images with known camera
poses are given as reference images.

Following D2-Net [6], we report the percentage of correctly localized night-
time queries under given error thresholds on camera position and orientation.
As in the paper, we report the performance of our descriptors combined with
both SIFT [9] and SuperPoint [5] keypoints. We compare our method with other
state-of-the-art methods and report the results in Tab. 1. It can be seen that
combined with SuperPoint [5] keypoints, our descriptors achieve the best overall
performance. When combined with SIFT [9] keypoints, our descriptors are also
comparable with the baseline methods. Note that our descriptors are learned
using only the weak supervision of camera poses.

1 https://www.visuallocalization.net/

https://www.visuallocalization.net/

2 Q. Wang et al.

Table 1: Evaluation on the Aachen Day-Night dataset[15,16]. We report the
percentage of correctly registered query images within given error thresholds (translation
error in meter and rotation error in degree). Our descriptors achieve state-of-the-art
performance.

Correctly localized queries (%)
Methods (0.5m, 2◦) (1m, 5◦) (5m, 10◦)

SIFT [9] 36.7 54.1 72.5
HardNet [11] 41.8 61.2 84.7
SuperPoint [5] 42.9 57.1 77.6
DELF [12] 38.8 62.2 85.7
D2-Net [6] 45.9 68.4 88.8
R2D2 [14] 46.9 66.3 88.8
SOSNet [18] 42.9 64.3 85.7
ContextDesc [10] 48.0 63.3 88.8

Our w/ SIFT kp. 44.9 68.4 87.8
Our w/ SuperPoint kp. 45.9 69.4 88.8

3 Sensitivity to Camera Pose Error

In the paper, we obtain camera poses from the Structure from Motion (SfM)
pipeline. With the global bundle adjustment in the SfM, the camera poses are
guaranteed to be fairly accurate. But how does our method perform given noisier
and less accurate poses, e.g., poses from visual inertial odometry?

To investigate the robustness of our method to errors in camera poses, we
add different levels of noise of uniform distribution to the camera poses and look
into how the performance of our method degrades with them. Specifically, we
add noise to both relative rotation and translation, with rotation noise measured
in degree and translation noise measured in percentage. We follow the same
experimental setup as in Fig.7 (a) and report the MMA score at 3-pixel threshold
in Tab. 2. It can be seen that the performance of our method is fairly stable even
when moderate levels of noise of uniform distribution are added to the camera
pose. Thus, we believe we can also train with less accurate poses e.g. from visual
inertial odometry.

Table 2: The performance of our method w.r.t. the noise in camera
poses. We sample the noise randomly from uniform distributions and add them
to the relative rotation and translation.

Noise level (Rotation[◦], Translation[%]) No noise (±2.5, ±1) (±5, ±2.5)

MMA@3px 62.7 61.7 59.4

Supplementary Material 3

4 Visualizing Predicted Distributions

Our method obtains the correspondence of a given query point in one image from
distributions over pixel locations in the other image at training time. The quality
of the distributions reflects the quality of learned descriptors. Therefore, we
visualize the distributions at both the coarse and fine levels for test image pairs
drawn from the MegaDepth dataset [8] and illustrate the results in Fig. 1. This
figure shows that, even under challenging illumination and perspective changes,
the peaks of the distributions can still indicate correct correspondences. Moreover,
compared with the coarse-level distributions, the fine-level distributions tend to
be peakier, demonstrating the discriminability of the fine-level feature descriptors.
However, our method can fail when repeating structures are present in the image,
as shown in the last row of Fig. 1.

5 More Qualitative Results on Dense Feature Matching

In this section, we present more qualitative results on dense feature matching.
To perform dense feature matching, we resize the coarse-level feature descriptors
to be the size of fine-level feature descriptors, and concatenate both to form
our final dense feature descriptors, whose spatial resolution is 1/4 of the input
image. For any given point in the first image, we find its nearest neighbor match
in the second image as its correspondence. No post-processing techniques are
used. The dense correspondences are visualized in Fig. 2. It is shown that the
correspondences are reasonable under various illumination and viewpoint changes.

6 Visualizing SfM Point Clouds

We visualize the sparse point clouds obtained by the protocol of the ETH local
feature benchmark [17] using our descriptors. The result is shown in Fig. 3.

7 Implementation Details

In this section, we provide our network architecture and additional techniques
that we find useful for improving the robustness and speed of training.

Network Architecture. During training, our system takes a pair of images as
input and extracts their features using a network with shared weights. We use
ResNet50 [7], as implemented in PyTorch [13], as the backbone of our network.
Our network is fully convolutional and accepts input images of any size. We take
a single image of size 640 × 480 × 3 as an example input and present a detailed
network architecture in Tab. 3. Our code and model will be made available soon.

Curriculum Learning. In general, we find that simply using ImageNet [4]
pretrained weights gives the network a good initialization. To help the network
converge faster, we can also optionally leverage curriculum learning [2], i.e.,

4 Q. Wang et al.

(a) (b) (c) (d)

Fig. 1: Predicted distributions on MegaDepth [8]. (a): query image with a single
red point indicating the query point, which is randomly sampled from the reconstructed
SIFT keypoints provided by MegaDepth [8]. (b): target image with red point indicating
the ground-truth match. (c): the predicted coarse-level distribution for the query point,
overlaid on the target image. (d): the predicted fine-level distribution for the query
point, overlaid on the target image. The red rectangle in (d) is the local window W ,
whose center location is determined by the highest mode of the coarse-level distribution.
The size of W is 1/8× that of the fine-level feature map. Regions outside of the local
window W have probability 0. Note that for ease of visualization, we resized all maps
to the original image size. The last row shows a failure case due to repetitive patterns.

presenting easier training examples and then harder ones. Specifically, we can
sort image pairs by their relative rotation angles, and feed easy pairs into the
network at the beginning of training for better initialization.

Training Points Pruning. As mentioned in Sec. 3.2 of the paper, the sampled
query points in the first image may not have true correspondences in the second
image, and enforcing losses on these points could prohibit training. To alleviate
this issue, we introduce the reweighting strategy in the paper. Besides this “soft”
filtering, we can also do “hard” filtering to get rid of points that are not likely
to have true correspondences. Specifically, we could assume the depth range
of the scene to be [dmin, dmax]. For each query point in the first image, this
range will yield a segment along its epipolar line in the second image. If this
line segment does not intersect the image plane of the second image, then this

Supplementary Material 5

Fig. 2: Dense Correspondence. For each row, the first two columns show original
images, and the last two columns show the correspondences found by our method.
Colors indicate correspondences. The first and second three pairs of images are from
HPatches [1] and MegaDepth [8], respectively. For each query point in the first image,
we find its correspondence in the second image by nearest neighbor search using our
dense descriptors. For the ease of visualization, we show correspondences for query
points with an interval of 50 pixels on regular image grids.

point is excluded from training. Since we do not assume known depths, we can
only roughly determine the depth range for each image. Even so, this strategy is
still found effective in removing a large fraction of unwanted training points. For

6 Q. Wang et al.

(a) Herzjesu (b) South Building

Fig. 3: Sparse point cloud visualization. The two scenes are “Herzjesu” and
“South Building”, respectively. We follow the ETH local benchmark [17] to obtain
the SfM point clouds for both scenes.

Table 3: Network architecture. The first five layers have the same structure as in the
original ResNet50 [7] design, and are initialized with ImageNet [4] pretrained weights.
“Coarse” and “Fine” indicate the coarse- and fine-level output feature descriptors,
respectively. Note that “Conv” stands for a sequence of operations: convolution, rectified
linear units (ReLU) and batch normalization. The default stride is 1. “Upconv” stands
for a bilinear upsampling with certain factor, followed by a “Conv” operation with
stride 1. “[·, ·]” is the channel-wise concatenation of two feature maps.

Input (id: dimension) Layer Output (id: dimension)

0: 640 × 480 × 3 7 × 7 Conv, 64, stride 2 1: 320 × 240 × 64
1: 320 × 240 × 64 3 × 3 MaxPool, stride 2 2: 160 × 120 × 64
2: 160 × 120 × 64 Residual Block 1 3: 160 × 120 × 256
3: 160 × 120 × 256 Residual Block 2 4: 80 × 60 × 512
4: 80 × 60 × 512 Residual Block 3 5: 40 × 30 × 1024
5: 40 × 30 × 1024 1 × 1 Conv, 128 Coarse: 40 × 30 × 128
5: 40 × 30 × 1024 3 × 3 Upconv, 512, factor 2 6: 80 × 60 × 512
[4, 6]: 80 × 60 × 1024 3 × 3 Conv, 512 7: 80 × 60 × 512
7: 80 × 60 × 512 3 × 3 Upconv, 256, factor 2 8: 160 × 120 × 256
[3, 8]: 160 × 120 × 512 3 × 3 Conv, 256 9: 160 × 120 × 256
9: 160 × 120 × 256 1 × 1 Conv, 128 Fine: 160 × 120 × 128

MegaDepth [8], we approximate dmin, dmax as 10−3 and 1 times the maximum
distance between two cameras, respectively, in each reconstructed model.

Training Curves. To give a most straightforward illustration on the effectiveness
of our loss function, we show the curves of our training loss as well as the training
PCK [3] in Fig. 4. For each training pair, the PCK is computed on sparsely
reconstructed keypoints from MegaDepth [8] with a threshold of 5 pixels. Higher
PCK means more correct correspondences found on the training data, indicating
better descriptors. It is shown in Fig. 4 that as our training loss goes down, the

Supplementary Material 7

PCK score increases, which verifies that minimizing our loss terms does lead to
the improvement of the feature descriptors.

0

0.1

0.2

0.3

0.4

- 0 5k 10k 15k 20k 25k 30k

(a) Training loss

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

- 0 5k 10k 15k 20k 25k 30k

(b) Training PCK

Fig. 4: Training loss and PCK. We train our network on MegaDepth [8]
dataset, and plot the curves of training loss and PCK [3].

References

1. Balntas, V., Lenc, K., Vedaldi, A., Mikolajczyk, K.: Hpatches: A benchmark and
evaluation of handcrafted and learned local descriptors. In: CVPR (2017)

2. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: ICML
(2009)

3. Choy, C.B., Gwak, J., Savarese, S., Chandraker, M.: Universal correspondence
network. In: NeurIPS (2016)

4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009)

5. DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: Self-supervised interest
point detection and description. In: CVPR Workshops (2018)

6. Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A., Sattler, T.:
D2-net: A trainable cnn for joint detection and description of local features. arXiv
preprint arXiv:1905.03561 (2019)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

8. Li, Z., Snavely, N.: Megadepth: Learning single-view depth prediction from internet
photos. In: CVPR (2018)

9. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2),
91–110 (2004)

10. Luo, Z., Shen, T., Zhou, L., Zhang, J., Yao, Y., Li, S., Fang, T., Quan, L.: Con-
textdesc: Local descriptor augmentation with cross-modality context. In: CVPR
(2019)

11. Mishchuk, A., Mishkin, D., Radenovic, F., Matas, J.: Working hard to know your
neighbor’s margins: Local descriptor learning loss. In: NeurIPS (2017)

12. Noh, H., Araujo, A., Sim, J., Weyand, T., Han, B.: Large-scale image retrieval with
attentive deep local features. In: ICCV (2017)

8 Q. Wang et al.

13. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In:
NIPS Autodiff Workshop (2017)

14. Revaud, J., Weinzaepfel, P., de Souza, C.R., Humenberger, M.: R2D2: repeatable
and reliable detector and descriptor. In: NeurIPS (2019)

15. Sattler, T., Maddern, W., Toft, C., Torii, A., Hammarstrand, L., Stenborg, E.,
Safari, D., Okutomi, M., Pollefeys, M., Sivic, J., et al.: Benchmarking 6dof outdoor
visual localization in changing conditions. In: CVPR (2018)

16. Sattler, T., Weyand, T., Leibe, B., Kobbelt, L.: Image retrieval for image-based
localization revisited. In: BMVC. p. 4 (2012)

17. Schönberger, J.L., Hardmeier, H., Sattler, T., Pollefeys, M.: Comparative Evaluation
of Hand-Crafted and Learned Local Features. In: CVPR (2017)

18. Tian, Y., Yu, X., Fan, B., Wu, F., Heijnen, H., Balntas, V.: Sosnet: Second order
similarity regularization for local descriptor learning. In: CVPR (2019)

	Learning Feature Descriptors using Camera Pose Supervision –Supplementary Material–

